Как описать класс и подкласс
Итак, описание класса начинается со слова class, после которого записывается имя класса. Соглашения "Code Conventions" рекомендуют начинать имя класса с заглавной буквы.
Перед словом class можно записать модификаторы класса (class modifiers). Это одно из слов public, abstract, final, strictfp. Перед именем вложенного класса можно поставить, кроме того, модификаторы protected, private, static. Модификаторы мы будем вводить по мере изучения языка.
Тело класса, в котором в любом порядке перечисляются поля, методы, вложенные классы и интерфейсы, заключается в фигурные скобки.
При описании поля указывается его тип, затем, через пробел, имя и, может быть, начальное значение после знака равенства, которое можно записать константным выражением. Все это уже описано в главе 1.
Описание поля может начинаться с одного или нескольких необязательных модификаторов public, protected, private, static, final, transient, volatile. Если надо поставить несколько модификаторов, то перечислять их JLS рекомендует в указанном порядке, поскольку некоторые компиляторы требуют определенного порядка записи модификаторов. С модификаторами мы будем знакомиться по мере необходимости.
При описании метода указывается тип возвращаемого им значения или слово void, затем, через пробел, имя метода, потом, в скобках, список параметров. После этого в фигурных скобках расписывается выполняемый метод.
Описание метода может начинаться с модификаторов public, protected, private, abstract, static, final, synchronized, native, strictfp. Мы будем вводить их по необходимости.
В списке параметров через запятую перечисляются тип и имя каждого параметра. Перед типом какого-либо параметра может стоять модификатор final. Такой параметр нельзя изменять внутри метода. Список параметров может отсутствовать, но скобки сохраняются.
Перед началом работы метода для каждого параметра выделяется ячейка оперативной памяти, в которую копируется значение параметра, заданное при обращении к методу. Такой способ называется передачей параметров по значению.
В листинге 2.1 показано, как можно оформить метод деления пополам для нахождения корня нелинейного уравнения из листинга 1.5.
Листинг 2.1. Нахождение корня нелинейного уравнения методом бисекцйи
class Bisection2{
private static double final EPS = le-8; // Константа
private double a = 0.0, b = 1.5, root; // Закрытые поля
public double getRoot(}{return root;} // Метод доступа
private double f(double x)
{
return x*x*x — 3*x*x + 3; // Или что-то другое
}
private void bisect(){ // Параметров нет —
// метод работает с полями экземпляра
double у = 0.0; // Локальная переменная — не поле
do{
root = 0.5 *(а + b); у = f(root);
if (Math.abs(y) < EPS) break;
// Корень найден. Выходим из цикла
// Если на концах отрезка [a; root]
// функция имеет разные знаки:
if (f(а) * у < 0.0} b = root;
// значит, корень здесь
// Переносим точку b в точку root
//В противном случае:
else a = root;
// переносим точку а в точку root
// Продолжаем, пока [а; Ь] не станет мал
} while(Math.abs(b-a) >= EPS);
}
public static void main(String[] args){
Bisection2 b2 = new Bisection2();
b2.bisect();
System.out.println("x = " +
b2.getRoot() + // Обращаемся к корню через метод доступа
", f() = " +b2.f(b2.getRoot()));
}
}
В описании метода f() сохранен старый, процедурный стиль: метод получает аргумент, обрабатывает его и возвращает результат. Описание метода bisect о выполнено в духе ООП: метод активен, он сам обращается к полям экземпляра b2 и сам заносит результат в нужное поле. Метод bisect () — это внутренний механизм класса Bisection2, поэтому он закрыт (private).
Имя метода, число и типы параметров образуют сигнатуру (signature) метода. Компилятор различает методы не по их именам, а по сигнатурам. Это позволяет записывать разные методы с одинаковыми именами, различающиеся числом и/или типами параметров.
Замечание
Тип возвращаемого значения не входит в сигнатуру метода, значит, методы не могут различаться только типом результата их работы.
Например, в классе Automobile мы записали метод moveTo(int x, int у), обозначив пункт назначения его географическими координатами. Можно определить еще метод moveTo (string destination) для указания географического названия пункта назначения и обращаться к нему так:
oka.moveTo("Москва") ;
Такое дублирование методов называется перегрузкой (overloading). Перегрузка методов очень удобна в использовании. Вспомните, в главе 1 мы выводили данные любого типа на экран методом printin() не заботясь о том, данные какого именно типа мы выводим. На самом деле мы использовали разные методы t одним и тем же именем printin, даже не задумываясь об этом. Конечно, все эти методы надо тщательно спланировать и заранее описать в классе. Это и сделано в классе Printstream, где представлено около двадцати методов print() и println().
Если же записать метод с тем же именем в подклассе, например:
class Truck extends Automobile{
void moveTo(int x, int y){
// Какие-то действия
}
// Что-то еще
}
то он перекроет метод суперкласса. Определив экземпляр класса Truck, например:
Truck gazel = new Truck();
и записав gazei.moveTo(25, 150), мы обратимся к методу класса Truck. Произойдет переопределение (overriding) метода.
При переопределении права доступа к методу можно только расширить. Открытый метод public должен остаться открытым, защищенный protected может стать открытым.
Можно ли внутри подкласса обратиться к методу суперкласса? Да, можно, если уточнить имя метода, словом super, например, super.moveTo(30, 40). Можно уточнить и имя метода, записанного в этом же классе, словом this, например, this.moveTo (50, 70), но в данном случае это уже излишне. Таким же образом можно уточнять и совпадающие имена полей, а не только методов.
Данные уточнения подобны тому, как мы говорим про себя "я", а не "Иван Петрович", и говорим "отец", а не "Петр Сидорович".
Переопределение методов приводит к интересным результатам. В классе Pet мы описали метод voice(). Переопределим его в подклассах и используем в классе chorus, как показано в листинге 2.2.
Листинг 2.2. Пример полиморфного метода
abstract class Pet{
abstract void voice();
}
class Dog extends Pet{
int k = 10;
void voice(){
System.out.printin("Gav-gav!");
}
}
class Cat extends Pet{
void voice () {
System.out.printin("Miaou!");
}
}
class Cow extends Pet{
void voice(){
System.out.printin("Mu-u-u!");
}
}
public class Chorus(
public static void main(String[] args){
Pet[] singer = new Pet[3];
singer[0] = new Dog();
singer[1] = new Cat();
singer[2] = new Cow();
for (int i = 0; i < singer.length; i++)
singer[i].voice();
}
}
На рис. 2.1 показан вывод этой программы. Животные поют своими голосами!
Все дело здесь в определении поля singer[]. Хотя массив ссылок singer [] имеет тип Pet, каждый его элемент ссылается на объект своего типа Dog, Cat, cow. При выполнении программы вызывается метод конкретного объекта, а не метод класса, которым определялось имя ссылки. Так в Java реализуется полиморфизм.
Знатокам C++
В языке Java все методы являются виртуальными функциями.
Внимательный читатель заметил в описании класса Pet новое слово abstract. Класс Pet и метод voice() являются абстрактными.
Рис. 2.1. Результат выполнения программы Chorus